PhotoNext Researcher's Day

Physics-based VCSELs simulations

Tutor: Prof. Michele GOANO

Ph.D. student:

Alberto GULLINO

Co-supervisors: Prof. Francesco BERTAZZI Prof. Giovanni GHIONE

Fundamental contributions:

Dr. Alberto TIBALDI Dr. Pierluigi DEBERNARDI

Why VCSELs?

Focus on *Vertical-Cavity Surface-Emitting Lasers* (<u>VCSELs</u>):

- Low threshold currents and power consumption (w.r.t. EEL)
- Ideal for optical fiber coupling (circular output beam)
- > Excellent dynamic properties (small active size)
- Low production, testing and packaging costs
- Easy 2D arrays production

Why VCSELs?

Focus on *Vertical-Cavity Surface-Emitting Lasers* (<u>VCSELs</u>):

- Low threshold currents and power consumption (w.r.t. EEL)
- Ideal for optical fiber coupling (circular output beam)
- Excellent dynamic properties (small active size)
- Low production, testing and packaging costs
- Easy 2D arrays production

AlGaAs VCSELs applications (1)

The global internet infrastructure relies on short haul communications in **datacenters**.

<u>Oxide-confined AlGaAs</u> VCSELs emitting at 850-980 nm are currently dominating the optical interconnects, maintaining stable and fast operations (**small active size**, defined by the oxide aperture diameter):

AlGaAs VCSELs applications (2)

Apple TrueDepth (from iPhone X)

AlGaAs VCSELs applications (2)

AlGaAs VCSELs applications (2)

VENUS: our in-house VCSEL solver

VENUS: our in-house VCSEL solver

1700914

T = 20 °C T = 50 °C T = 80 °C

12

10

T = 20 °C T = 50 °C T = 80 °C T = 110 °C

VENUS: TJ-VCSELs

VENUS: TJ-VCSELs

VENUS extension: TJ treatment

VENUS extension: TJ-VCSEL results

- <u>Solid</u>: pin VCSEL
- **Dashed**: TJ-VCSEL

T = 20 °C T = 50 °C T = 80 °C T = 110 °C

PhotoNext Researcher's Day

Thank you for your attention!

